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ke sE SRS - EoliEETee

OFRERH=NSZ2INESEESFIRE
e iEE(Distance) - ERfEHE N ERVIER

> Z{IsTEIcE ... Euclidean JEE, PCA (as a transformer)
> REZEEE R - H ERIEEREH
v KNN (K Nearest Neighbor), MDS (Multi-Dimensional Scaling), IsoMap, LE, LLE, ...
» BT R AR I =B PEURAVEERS — Kernel AU
o JYEFE>rF — ik (Principal Components)
» PCA, FA (Factor Analysis), CCA, ICA, ...
» Regression-based Significance analysis
» Sparse Coding — Compressed/Compressing Sensing

o HHEEAISZIHEZS — EM (Expectation Maximization)

» K-means, LDA, GMM, HMM, Peacock &
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| https://zh.wikipedia.org/wiki/## /K %2 - [x] 7] K 3
8 https://en.wikipedia.org/wiki/Hermann_MinkowskKi

0 Euclidean and Minkowski (BBRJ<HRE) distances

i

dist(X.Y) = \ S (i — )2

=1
il
4 - h i Sl = M 2
dist(X.Y) = () |z — ") L2 norm [L2 TR X1, =[S,
i—1 L1 norm [L1YEx] — where p=1, [IX|l; = XM, |l
LO norm [LOYE=] — Special: least non-zeros
O Similarity
B Given two vectors X = (x,,%,,) and Y = (y,, -+, v,,) , similarity is defined
as
»sim(%,7) = A0
(X.Y) ][I



https://zh.wikipedia.org/wiki/赫尔曼·闵可夫斯基
https://en.wikipedia.org/wiki/Hermann_Minkowski

Data with many properties/variables

0 Example: 53 Blood and urine measurements (wet
chemistry) fr01§155 people (33 alcoholics, 32 non-
alcoholics).

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH | H-MCHC

: : Al 8.0000| 4.8200| 14.1000| 41.0000| 85.0000] 29.0000] 34.0000
* Dowe nee_d a 53 dimension A2 7.3000| 5.0200| 14.7000| 43.0000| 86.0000] 29.0000] 34.0000
space to view data? A3 43000 4.4800| 14.1000| 41.0000| 91.0000| 32.0000] 35.0000
: ; : Ad 7.5000 | 4.4700 | 14.9000 | 45.0000 | 101.0000| 33.0000] 33.0000
How to find the ‘best’ low A5 7.3000 | 5.5200 | 15.4000 | 46.0000 | 84.0000 | 28.0000 | 33.0000
- . A6 6.9000 | 4.8600| 16.0000| 47.0000| 97.0000] 33.0000] 34.0000
dimension sSpace that conveys A7 7.8000 | 4.6800 | 14.7000| 43.0000| 92.0000] 31.0000] 34.0000
maleum useful |nf0rmat|0n’) A8 8.6000 4.8200 | 15.8000| 42.0000| 88.0000| 33.0000| 37.0000
e A9 51000| 4.7100| 14.0000| 43.0000| 92.0000] 30.0000] 32.0000
One answer: PCA — Principle 100
Component Analysis 900}
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The philosophy is to cope with

complex task by digging the

COPCA is “ th major contradiction
'S “ah OOy« [FRREZYEER, EITEFE]
transfers the datato a ne% .

M the greatest variance by any projection of the data comes to lie on the
first coordinate (first principal component),

M the second greatest variance lies on the second coordinate (second principal
component), and so on.”
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O PCA

1. Given original data set S = {x1, ..., xX}, produce new set by subtracting the
mean of attribute A, from each x.

X y X y
25124 .69 49

051 0.7 -1.31 | -1.21
22129 39 99
19|22 .09 29

Data= 3.1 | 3.0 DataAdjust= 129 | 1.09
23| 2.7 49 79

1.6 19 -31

1 | 1.1 -81 | -.81

15| 1.6 -31 | -31

1.1 {09 -71 | -1.01

Mean: 1.81 191 Mean: 0 0




Crrigimal PCA data
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Covariance of two attributes n

> (=93~ )
2. Calculate the covariance matrix (¥p5Z5EFE): O cov(xy) = Z==D0:-7)

n

X y

X[ 616555556 615444444
COU=W 615444444 716555556

3. Calculate the (unit) eigenvectors (1[5 &) and eigenvalues (RF1E
of the covariance matrix:

=

0490833989 )

etgenvalues = ( 198402771

—.735178656 —.677873399
677873399  —.735178656

eigenvectors = (




B Covariance matrix

» Suppose we have n attributes, A,, ..., A..

» Covariance matrix:

C™N = (Ci,j)’ where Ci;= COV(A, Aj)

N ETEE DG )

cov(x,y) =

n

» Example for three attributes (x,y,z):

(cov(x,X) cov(X,y) cov(x,z)
cov(y,x) cov(y,y) cov(y,z)

cov(z,x) cov(z,y) cov(z,z)



4. Order eigenvectors by eigenvalues — highest to lowest.

— 677873399
v, = 4 =1.28402771
— 735178956

V, =

—.735178956
A =.0490833989
677873399

[ In general, you get n components. To reduce dimensionality to p,
ignore n—p components at the bottom of the list.




0490833989 )

eigenvalues = ( 1.28402771

= Select top eigenvector. camcors - (TR T )
»New Feature vectors = (vy, V,, ...V)

— 677873399 —.735178956
FeatureVedorl=

—.735178956 .67/7873399

ol reduceddimension feature vector:

FeatureVedor2 = (

—.677873399
—.735178956




5. Derive the new data set.
B TransformedData = RowFeatureVector x RowDataAdjust

RowFeatureVectorl =
(— .7/35178956 .677873399

—.677873399 - .735178956)

RowDataAdjustT= (

69 -131 39 09 129 49 19 -81 -31 -.71
49 -121 99 29 109 .7/9 -31 -81 -31 -1.01




RowFeatureVectorl =

0 PCA as atransformer

Transformed Data=

r y

~827970186 | -.175115307
1.77758033 | .142857227
-992197494 | 384374989
-274210416 | .130417207
-1.67580142 | -.209498461
-912949103 | .175282444
0991094375 | -.349824698
1.14457216 | 0464172582
438046137 | 0177646297
1.22382056 | -.162675287

— 677873399 — .735178956
— 735178956 .677873399

T T
ddddddddddddd

Data transformed with 2 eigenvectors
2 T T T

" Idoublevecfinal. dat' = +

1.5 | .

05 - -

-0.5 | —

-1.5 .

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors,
and a plot of the new data points.




RowFeatureVector2 = (- .677873399 - .735178956)

O PCA for Dimension Reduction [P&E4E]

2 1 I I I 1 I I

—.677873399 15 b
—.735178956

FeaturelVector2 = (

ik

Transformed Data (Single eigenvector) 05 |
A
-.827970186
177758033
992197494
-.274210416
-1.67580142
-.912949103 T
0991094375
1.14457216 15

438046137
1.22382036 2

> 0 * X X ¥ * ¥ * ¥ X ¥
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Example 23
Consider the following data (see Fig. 5.2):

x: —=1.0 400 +1.0 +4+2.0 +4+3.0 +4+4.0
y: +1.1 407 423 +14 422 437

First, we adjust the data by subtracting their means x and y, respectively, and we have

Wehave X =x —xand Y =y — y:

X: =25 —-15 =05 405 +1.5 +25
y: -08 -12 404 =05 403 +1.8

which have zero means. We can then calculate the covariance matrix

o [ 3500 1.660
—\ 1660 1164 )




Since cov(x, y) is positive [so is cov(X, Y) = cov(x, y)], it is expected that y increases with x
or vice versa.
The two eigenvalues of C are

A =436, Ay =0.302.

Their corresponding eigenvectors are

0.887 —0.461
) = . UHr = s
0.461 0.887
and these two vectors are orthogonal, that is, ur{uz = u| - uy = 0. They span the orthogonal

matrix
Though PCA can work well for many applications, its covarianc

N 0837 —0.461 sitive to a few large values. Thus, normalization of each dimension

~\ 0461 0887 to zero mean and unit variances. In general, PCA works under th

. . the underlying subspace is linear. For some applications, PCA can |
Using the adjusted data Y D PP

arate data into different classes. In this case. linear discriminant ane
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O Euclidean and Minkowski (FBE]FHRE) distances

dist(X.Y) = = Yi)*

i=1
n
. y X y ) — |yM 42
‘[,_\.f[‘\ Y ) = ( E |_,.! _ !Ir}’ )1/1' L2 norm [L2 #53] || X|l, = [XM, %
i=1 L1 norm [L1455] — where p=1, [|X]l; = 32, |x]
L0 norm [LO:ti:\] — Special: least non-zeros

[0 Yes, Euclidean space and distance are intuitive for us — We like
them!
0 But, there are still other spaces and distances not intuitive

M Distance between C and D? — depended on the connection from C to D
along the surface




Non-Euclidean Geometries [EERJL{a]]

C0We human are 3-D creature

B Since we live on the HUGE earth, we
are familiar with Euclidean Geometry
first

»we know Euclidean geometry is the
approximation of manifold earth

» Euclidean distance could be understood as reduced dimension math for 3-D
manifold

B And we spend many years to know other geometries — Non Euclidean
geometries

» Lobachevsky Geometry

L EYIRE LA -
» Riemann Geometry ]
2817

==

Hyperbolic Euclidean Elliptic



https://zh.wikipedia.org/wiki
http://www-history.mcs.st-andrews.ac.uk/Biographies/Lobachevsky.html

Called as Manifolds

0 Manifolds [{fit#2]?
= “A manifold is a topological space
which is locally Euclidean.”

¥ In general, any object which is nearly
"flat" on small scales is a manifold.

M Euclidean space is a simplest example
of a manifold.




K-NN focuses on LOCALITY

0K NN (Nearest Neighbor) is a simple idea
" YILLEBRALLES”
> If you want to know sgme oas learn from TA's friends

SR YRYEIRS]  \\hen a man is on a big ome ones like you, maybe from

same Col ball, his neighbors are
most important! ©

)

O Approximation

B Based on some distance/similarity
measure, top K instances
(K nearest neighbors) could be
selected to describe or learn the
shared properties for the given sample




COJKNN as the naive methodology could be used in many cases
M Regression

s k-NN Regression
—— k-NN prediction
ee e data
1.0}
0.5}
e
Q
O 0.0f
£
-0.5}
-1.0}
“137 0 1 2 3 4




COJKNN as the naive methodology could be used in many cases
M Classification

KNN idea is also used
later when locating the
principle components of
the data




ke sE SRS - EoliEETee

OFRERH=N=RF2INESEISFIEE
o (5= (Distance) - EffEBHE N ERIEE
> ZIEEI0E ... Euclidean §BES, PCA (as a transformer)

> REZURR AN - H ENIERREE
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Manifolds

OO Manifolds [iitH2]?
® “A manifold is a topological space
which is locally Euclidean.”

M In general, any object which is nearly
"flat" on small scales is a manifold.

¥ Euclidean space is a simplest example
of a manifold.




he REAL distance on a big ball?

[0 Geodesic[{llittEE] manifold [iitH?] distances?

® Manifold — a method to map higher dimension to lower dimension (of course
strict math definition is needed)

»We are on 3D earth

v'The distance between two

locations — like Beljing to
New York — is measured
by geodesic distance: on
big circle, not the direct
line

»But still we could map relative

locations into 2D map

v'But distance should be geodesic




Of course, the REAL distance should be kept, especially
the relative position

[0 Geodesic [{llitE&E] : the shortest curve on a manifold that connects
two points on the manifold

B Example: on a sphere, geodesics are great circles
[0 Geodesic distance [jllitt&IEES] : length of the geodesic




 We still want to understand/simulate them as Euclidean

Euclidean
distance




https://scikit-learn.org/stable/auto examples/manifold/plot mds.html#sphx-

D M DS as a tran SfO Fmer glr-download-auto-examples-manifold-plot-mds-py

@ True Position

5]
® MDS
® NMDS



https://scikit-learn.org/stable/auto_examples/manifold/plot_mds.html#sphx-glr-download-auto-examples-manifold-plot-mds-py

® PCA is mainly for linear separable situation

PCA cannot capture NON-LINEAR structure!

B MDS - Preserves the inter-point distances, equivalent to PCA when the
distances are Euclidean

B MDS is the basis for many other Nonlinear Dimensionality
Transforming/Reduction methods

»IsoMap, LE, LLE, ...




e Multidimensional scaling (MDS) is another classical ap-
proach that maps the original high dimensional space to

MDS: Multi-Dimensional Scaling

a lower dimensional space.

COOFind an embedding that preserves the inter-point distances,
equivalent to PCA when the distances are Euclidean.

4 Of course, the REAL

distance should be kept,
especially the

0 x, | RELATIVE POSITION
PCA MDS

B AN embedding Is a representation of a topological object,
manifold, graph, field, etc. in a certain space in such a way that
Its connectivity or algebraic properties are preserved.




Multi-Dimensional Scaling...

CDHere we are given pairwise distances instead of the
actual data points.

M First convert the pairwise distance matrix into the
dot product mXXx*

B After that same as PCA.

If we preserve the pairwise distances
do we preserve the structure??




How to get dot product matrix from pairwise distance matrix?

ds; = diy; + di; — 2dgdyjeos()

bij = dy;dyjcos(a)

1
bij = E(d%i + d; — diy)




« MDS

o distances dij R
) - X | [1 2 > (111 B3N /111 13
di=0s=x)" =% | x|l 4| =G0 (GI-1D)
xJ| |5 6 =[-2 —2][:§]=4+4
* Relation R
1 0 [8]32
A=-=d A-_1lg 0 8
2 2
B = HAHT, His the centering matrix 32 8 0]
1 8 0 -8
H=(1--)
_ _ B=|0 0 0
bij = (X —x)' (Xj — X) -8 0 8 |
FAWAY .
then B = (HX)(HX)" = XX" After this B, same as PCA.




We'll use the three-point example of the airline distances between ABQ,
LAX, and SEA airports. For this example,

0 664 1184
.iSEA D= 664 0 959
1184 959 0
dki
d; 0  664° 11847
A=—| 6642 0  959°
a _ 11842 9592 0

ABQ dy; LAX B(I;J)A(I;J)




Multidimensional scaling in R

> D <- ¢(0,664,1184,664,0,959,1184,959,0) > I3 <- diag(3)

> D <= matrix(D,ncol=3) > I3

> D [,1] [,2] [,3]
[,1]1 [,2] [,3] 1,] 1 0 0

[1,] 0 664 1184 5 - 0 1 0

[2,] 664 0 959 ' 0 0 1

[3,] 1184 959 0
> A <- -(1/2)*D"2

> J <- matrix(rep(1,9),ncol=3)
5 A > J

[,1] [,2] [.3] [,11 [,2] [,3]
[1,] 0 -220448.0 -700928.0 :1,: 1 1 1
[2,] -220448 0.0 -459840.5 2, 1 1 1
[3,] -700928 -459840.5 0.0 (3, ] 1 1 1




Note that the third eigenvalue is close to 0, suggesting that the data is
nearly two-dimensional.

> B <= (I3 = (1/3)*J) %x} A Jx% (I3 - (1/3)*J)

> B
[?1] [:2] [:3]
(1,] 307313.667 6503.167 -313816.8

2, 6503.167 146588.667 -153091.8

[3,] -313816.833 -153091.833 466908.7

> V <- eigen(B)

>V

$values

[1] 7.378113e+05 1.829997e+05 1.205708e-12

$vectors

[,1] [,2] [, 3]

-0.5779379 0.5767620 0.5773503



Eigenvectors are in the columns of V$vectors.

> B %4*% VPvectors[,1]
[,1]
[1,] -426409.1
[2,] -155325.2
[3,] 581734.4
> V8vectors[,1] * VPvalues[1]
[1] -426409.1 -155325.2 581734.4

The three dimensional coordinates are

> V¥vectors %x*% diag(sqrt(V¥values))
[,1] [, 2] [,3]
[1,] -496.425 246.7299 6.33958e-07
[2,] -180.830 -337.4750 6.33958e-07
[3,] 677.255 90.7451 6.33958e-07

-




Since the third coordinate is the same in all cases, it can be ignored, and
we get 2-dimensional coordinates for the three cities.

~ > V$vectors %x*Y, diag(sqrt(V$values))
[,1] [, 2] [,3]

1,] -496.425 246.7299 6.33958e-07

2,] -180.830 -337.4750 6.33958e-07

1 677.255  90.7451 6.33958e-07

> Z <- V§vectors 7%*/, diag(sqrt(V¥values))

> plot(al,1],al,2])

> sqrt(sum((all,]-al2,])"2)

+ )

[1] 664

> sqrt(sum((all,]-al2,])72))

[1] 664

> sqrt(sum((all,]-al3,])72))

El (1] 1184 -




> plot(al,1],al,2] ,x1im=c(-700,700),ylim=c(-700,700))
> text(al,1],al,2]+25,c("ABQ" ,"LAX" ,"SEA"))

= > # or try
> plot(-al,1],a[,2],x1lim=c(-700,700),ylim=c(-700,700))
> text(-al,1],al,2]+25,c("ABQ", "LAX","SEA"))

It helps to make the plotting area square.

200 400 600

ABQ

SEA

al, 2]
0

-200

LAX

-600 -400




o0 choose the dimension k

To cha It helps to make the plotting area square. :d the

STRES tween
distanc

dimens a5 ased on
p dimg

201

A0+

Mintimum STRESS
n
f

The ST be used
to just 05+ — od, can
help e TTTre—— the

origina

Figure 15.4. Ideal plot of minimum STRESS versus k.



MDS is built into R.

— > MDS I
$points
[,1] [, 2]
1,1 496.425 -246.7299
2,] 180.830 337.4750
3,] -677.255 -90.7451

$eig
[1] 7.37811e+05 1.83000e+05 4.36557e-11

This essentially agrees with what we got before but the new points are
rotated compared with what we had. The cmdscale command also
requires k < n, so the function returns an error for k = 3 even though the
theory works out.
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Ol Linear methods
®m PCA (Principal Component Analysis) 1901
B MDS (Multidimensional Scaling) 1952

CINonlinear methods

B ISOMAP(ZREERLET) 2000

»J.B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, vol. 290, pp. 2319--2323, 2000

B LLE (Locally Linear Embedding: &Pz 4ax ) 2000

»S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, vol. 290, pp. 2323--2326, 2000

B LE (Laplacian Eigenmap: i B iFitsd) 2003

»M. Belkin, P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data
Representation. Neural Computation, Vol. 15, Issue 6, pp. 1373 —-1396, 2003




ISOMAP, LLE and Laplacian Eigenmap

C0The graph-based algorithms have 3 basic steps.
1. Find K nearest neighbors.

2. Estimate local properties of manifold by looking at
neighborhoods found in Step 1.

3. Find a global embedding that preserves the properties found in
Step 2.




L ISOMAP (algorithm description)

B Step 1
»Determining neighboring points within a fiXed radius based on the input space
distance d,(i,j) € ?
» These neighborhood relations are represented as a weighted graph G over the
data points.
v Distance matrix: d;; = Neighbor distance if i and j are neighbors; else d;; = o.
m Step 2

» Estimating the geodesic distances d(i,j) between all pairs of points on the
manifold by computing their shortest path distances (Floyd or Dijkstra) in the
graph G.

m Step 3

» Constructing an global embedding of the data in d-dimensional (Top d —
PCA/MDS) Euclidean space Y that best preserves the manifold’s geometry.




[0 Sample points with Swiss Roll

W Altogether there are 20,000 points in the “Swiss roll” data set. We sample
1000 out of 20,000.




[0 Construct neighborhood graph G
B K- nearest neighborhood (K=7)
B D is 1000 by 1000 (Euclidean) distance matrix of two neighbors (figure A)

A c




[0 Compute all-points shortest path in G

® Now D¢ is 1000 by 1000 geodesic distance matrix of two arbitrary points
along the manifold(figure B)




[0 Use MDS/PCA to embed graph in R

® Find a d-dimensional Euclidean space Y (Figure c) to minimize the cost
function:

E=|rDg — 7Dy,

®
W best preserves the manifold’s geometrgy

A Solution: take top d
ay -4 2 4%
{1 P eigenvectors of the »

=y ;-.':“f:_:“ ’“.E 4+ . h:.
1| e 5 matrix 7(Dg) :‘
: e, g‘:'-; -
i -y ":1-::-:? e "“ 5 v;:.




LILLE (Locally Linear Embedding)

™ Neighborhood preserving embeddin
» Recovering global nonlinear structur§ r fits.

® Each data point and it's neighbors is expected to lie on or close
to a locally linear patch.

~Each data point is constructed by it's neighbors:

X =D WX,
J

W, =0 if X, is not a neighbor of X,

W Where W; summarize the contribution of j'" data point to the i
data reconstruction and is what we will estimated by optimizing
the error.

W Reconstructed from only its neighbors.




Experimental Results (LLE)

« Lips

# PCA #LLE




wo approaches to local sparse coding

\\————’

Approach 1
Coding via local anchor points

Local coordinate coding

Learning locality-constrained linear coding for image
classification, Jingjun Wang, Jianchao Yang, Kai Yu,
Fengjun Lv, Thomas Huang. In CVPR 2010.

Nonlinear learning using local coordinate coding,

Kai Yu, Tong Zhang, and Yihong Gong. In NIPS 2009.

Approach 2
Coding via local subspaces

Super-vector coding

Image Classification using Super-Vector Coding of Local Image
Descriptors, Xi Zhou, Kai Yu, Tong Zhang, and Thomas Huang.
In ECCV 2010.

Large-scale Image Classification: Fast Feature Extraction and
SVM Training, Yuanqing Lin, Fengjun Lv, Shenghuo Zhu, Ming
Yang, Timothee Cour, Kai Yu, LiangLiang Cao, Thomas Huang.
In CVPR 2011




[0 And it’s always one hot topic in Scientific Fictions to imagine how
the more than 3D looks like

R /E’éi’dﬂ 5:]2 i ﬁf

Epic of the wandering Earth

HREBHNS REABNEFR HERRKEEE >’ X1\




ke sE SRS - EoliEETee

OFERiR = SFZINEFEEEHEE

o 5= (Distance) - ERTHEHKE N ERYEER
> ZIEEI0E ... Euclidean §BES, PCA (as a transformer)
> REZEEE R - H ERIEEREH

v KNN (K Nearest Neighbor), MDS (Multi-Dimensional Scaling), IsoMap, LE, LLE, ...

> (BB B RS =S B P EURERYIER — Kernel HIBELE

o JYEFE>rF — ik (Principal Components)
» PCA, FA (Factor Analysis), CCA, ICA, ...
» Regression-based Significance analysis
» Sparse Coding — Compressed/Compressing Sensing

o HHEEAISZIHEZS — EM (Expectation Maximization)

» K-means, LDA, GMM, HMM, Peacock &

© BiERYFES




[0 Kernel is a skill to indirectly compare the closeness of two
data records

W Points that are not linearly separable in 2 dimension, might be
linearly separable in 3.

2

()| 2 i
A kernelb e |
X %‘.‘"\

Kernel implicitly maps from 2D to 3D,
making problem linearly separable




%mz[mhm?amﬂ :y_[ylmyz':yB] FAIEN
¢(z) = [z121, 2123, T1T3, T2T1, T22, TT3, T3T1, Ty T2, Ty T3] FIEHIEN =
TiEBReTRIN TG, UBARITE ¢(1, 2, 3) - (4, 5,6) :

5%

$(1,2,3) = [1,2,3,2,4,6,3,6,9]"
é(4,5,6) = [16, 20, 24, 20, 25, 30, 24, 30, 36]7
?(1,2,3) - (4,5,6) =1 x16+2x20+3 x24+2x20+4x25+6 x30+3 x24+6 x30+9x36
=16 + 40 + 72 + 40 4+ 100 + 180 + 72 + 180 + 324
= 1024

o AEHITSELER, 18, RS NAZERE:

‘.15(5“} . #ﬁ{y} = [Ilﬂ-'-l-ﬂﬁﬁz,ﬂ"-lﬁu,fﬁzl‘hﬂ?zm‘mEzﬂ"-mxsml-msmzsﬂ"-::m]T ) [yll!hsylys-ylymyzylsyzy:-yzymysylsyay‘s1y3y3]
=omTiy T Ty + T Tays + T2l - T2l Tl + Tala Tyl
FTayaxiin + TaysTale + T3ysTaly
= [T131 + X2 1?::1.31,!'3:]‘l

= (z"y)*
= K(z,y)
BiY FEES, FIATEAEEEMITIERAENSZ, (BEXESIPNERTTENSE

i, X IREA IJE}ﬁﬂﬂﬁ@ﬁH%:

K(z,y) = K((1,2,3),(4,5,6)) = (1 x4 +2 x5+ 3 x 6)* = (32)* = 1024

fEEET MRS 2

EETRIBHTAERES, BRRHUCKER TIHTENTRE, SEnEs%EEE

quanlan.zhihu.com/p/24291579

FH BT MK 2 ok B
2| = 4 =S 8] AT
REMIZH, %K
BRI 7
P FE, (15 A5
A AR N T A
Ae, BWAIATEEAL
TE R 4 2% [a] Ry 8 s
& (B LA 2 B 4
Ery, FATH
TAE S R A2 B4
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https://zhuanlan.zhihu.com/p/24291579

[l In general we need not know the form of ¢.

0 Just specifying the kernel function is sufficient.
K(CIZi, CIZj)

[0 A good kernel:

= Computing K(x;,x;) is cheaper than ¢(x;)
0 Valid Kernels:

B Symmetric K(%,2) = K(Z,%)

B Must be decomposable into ¢ functions

»>Gram matrix [fEHii8%ER%] is positive semi-definite (PSD).

Kij = ¢(x:)" o(x;)

»Diagonal entries are larger than the sum of the abs. values of the off diagonal
entries in each row — —
QETKU‘.CE Z 0




o HIEZE
k(z,z;) = - x;

S, TERTERMETSNER, RMIUUSINSTEEREATBNEEE—FR, EEEER, NTERMns80E, BES
FUERIEE, Rt iBEac=nl RIS, BEMENR, WEMTHIE5IH

. BRALEL
K(z,z;) = ((z - ;) + 1)

ZINTUZERZO] DAL R\ S E S RS GRS AE=SE], (BEE2IMTUZERINEEE, YEsmAMEttRENEZE, 5k
T EESEER TS ASE LS/, 1TEEESAEITRTE,

« =Hi (RBF) #ZiK]

2 — |
(z, 3i) = exp(———5 )

SHEEEREE—MEEEaIZERE, B — 1 EARIRS 2 — E5EN=ER, ZRREHENBAES 1—1, TIeAHFR
REIVERERE BRI EE, MEEENTEIMURRHEHNEL, Rt XESHIER MEAIER AR R, LEERS

» sigmoid{ZERsY
k(z,z;) = tanh(n < z,z; > +6)

ﬂ FFsigmoidtzZE, SZISEEVTINEE — TS B ML,




O fEiE AR ERIAS X,
B UNRBAINEAIBIEHEE —ERSCIeA IR, MF B SRR TS RS Ay
IZREL;
m ANRAKNEANE, BREERZNIIERSE, RIAAR%ERE, RERT
E;JZEWMZ%E&%E’W BREY, EEBA LSS MAREESIER, % 3R

OFESEERRLE, tBREGEHT—RIINEIFZERIRGE:
B NSRFFIERVSE RN EEASS, NIZALREGEZLIEZHISVM,;
m UNSRASERVELE /)N, HARISELER, )\Jl_ _SVM+.%HE¢? RREN;

lﬁ'ﬁr ?%EI’J*SZE/J\ HARNEERK, NWEEFLHMI—E4SEMTEENES
T =1

-




3. BEILAEXFFERIFHNA

BATER B ERUZFM BN ERESY, THREFREIE LSRN
(7 B 1H ) R R\ LB 5 240 2 18 (B, ZE 48 i) S8 1 s o6 3 st 30
(7.37) HEIAB x, . x, AT ARBR B K (x,, %) = 9(x,) - #(x,) RAREE. pmtxtEigm ER

__hj__;
i B bR ek E A A

W () ——ZZaa, v,y K(x,x,)- Za (1.67)

i=l j=1 i=]

FIFE, 7P KR B RN AT DU R AR, TR R BN

S(x)= Sign(iai‘)’:¢(xz) «P(x)+ b‘) = Sign(ia:yiK(xnx) T b‘) (7.68)

i=] i=1

XY F 25 WU R 3o H ORI 2 R 9B OIQIe o€ in SVM for
N2 8] o B P AR x, « x, 2 A A 2 18 R B P R @, ) - (3 onjinesr ?ata
MVt As 2 ST R SR IR 4B R SR 5 RS

EE A% BR B STHF ) AL JELR 1 2 RS AY. m



Some Methods Can Be “Kernelized"”

Definition

A method is kernelized if inputs only appear inside inner products: (\(x),P(y)) for x,y € X.

@ The kernel function corresponding to \ and inner product (-,-) is

k(x,y) = (b(x), b(y)).

e Why introduce this new notation k(x,y)?

e Turns out, we can often evaluate k(x, y) directly,
e without explicilty computing P (x) and P(y).

e For large feature spaces, can be much faster.
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ke sE SRS - EoliEETee

OFERH SN2 FINEFEESHIELE

e iEE(Distance) - ERFTEBKE NEWNIEE
> ZIEEI0E ... Euclidean §BES, PCA (as a transformer)

> REHIRERRT - HLRIEERER

v KNN (K Nearest Neighbor), MDS (Multi-Dimensional Scaling), IsoMap, LE, LLE, ...

> (e TR AR 42 IEUEP*HEEI’JEEH% Kernel RIS
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» K-means, LDA, GMM, HMM, Peacock &

© BiERYFES




RowFeatureVector2 = (- .677873399 - .735178956)

O PCA for Dimension Reduction [P&E4E]

2 1 I I I 1 I I

Transformed Data (Single eigenvector)
A

-.827970186
177758033
-.952197494 05 r &
-274210416
-1.67580142 > 0 X * X ¥ * * X * ¥ X ~
-.912949103
0991094375 5 L
1.14457216
438046137
1.22382036

15 | =




_ My work is a little
E|genfaces related with this ©
1 Developed in 1991 by M.Turk [PDF]

W Based on Principal Component Analysis (PCA)
W Relatively simple, Fast, Robust

lldea:

¥ Think of a face as being a weighted combination of some “component” or

“basis” faces
W These basis faces are called e|0|enfaces

-8029 2900 1751

>

.’


../../Materials/PPTs from others/PPTs-PCA/1991.JCN.Eigenfaces for Recognition.pdf

L1 These basis faces can be differently weighted to represent any face

[1So we can use different vectors of weights to represent different
faces

-8029 -1183 2900 -2088 1751  -4336 1445 -669 4238 -4221 6193 10549




1 Eigenfaces, the algorithm
¥ The database




We compute the average face

a +b +---+h
a, +b, +---+h,

~ where M =8

a +sz +---+th




Then subtract it from the training faces




Now we build the matrix which is N> by M

The covariance matrix which is N? by N?

Find eigenvalues of the covariance matrix
The matrix is very large
The computational effort is very big

We are interested in at most K eigenvalues
We can reduce the dimension of the matrix

Compute another matrix which is M by M



¥ Find the K eigenvalues and eigenvectors
» Elgenvectors of Cov and L are equivalent

W Build matrix V from the eigenvectors of L

W Eigenvectors of Cov are linear combination of image space with the

eigenvectors of L V is Matrix of

eigenvectors

] i M ] U: Face Space / Eigen Space
AN

Il

[ Xy Xp X35 X4 X ] wW




Eigenface of original faces
N\ [has




: : This threshold implies to
Detalls to recognize a face? recognize if a new face is

corresponding to a
recorded one or not

0=~ max{Jo, |} fori,j=L.w

1. Compute the threshold

2. For the new face

a. Subtract the average face from it




0. Compute its projection o;;o the face space U

c. Compute the distance in the face space between the face and all known
faces

g =|lQ-Q fori=1..M

d. Reconstruct the face from eigenfaces
e. Compute the distance between the face and its reconstruction

& =, 5|




. Distinguish between

> |f then it’s not a face; the distance between the face and its reconstruction
Is larger than threshold

> 1f EREUCRUWIMEYRRY 11 . it's 2 new face

E<Band g >260,(1=1..M)

the face space between the face and all known faces is larger than threshold

> If then it's a known face because the distance in




1 Problems with eigenfaces
¥ Different illumination

:
“The vanations between the images of the same face due to
illunination and viewing direction are almost always larger
than mage vanagons due to change in face 1dennty.”

-- Moses, Adim, Ullman, ECCV "94

W Different head pose

W Different alignment

W Different facial expression




FA: Factor Analysis
0 Your responsibility ©

Well-used latent variable models

Latent Observed variable scale
variable scale

Continuous Discrete
Continuous —actor analysis |Discrete FA
_LISREL RT (item response)
Discrete _atent profile _atent class analysis,
Growth mixture  |regression




Y1 = ﬂ,lF + 51 » The factor F is not observed; only Y,, Y5,

Y, are observed
Y,=AF+0, o

= 5, represent variability in the Y; NOT
Y, =AF +0, explained by F

= Y, is a linear function of F and o,

Y1 ﬂ'll ﬂ'lm_ o 51
with n variables and m factors : L : .

Ynxl - Anmemxl + 8nx1

Y Ay oo A - s

n M _fnxm | nx




FEigFE—it=EiTERmneE, EEESETRAINNEIRET, =Sl1o32%r=. A, EfRE, EigimEs:

T 1 064 029 0.1 R SR BT BRI S B S B & 5 AR5 B ER90% LL I,

p_|064 1 07 03 M B RAEE AT 5 H o B, R BEr eI m] . g2 i,
029 07 1 084 HERRA B XN TR PP E AR E R &, 7K

|01 03 084 1 ) Rl AT AR FEACH «

=

ENHIEHE, SREao IR RS thinE:

BEW. &BEH LR IR [0.60 0.71 UL ERTELE W, WA, f
r L _NEr RO L it a0 A4 |08 038 e R BOR, AZIE AN
l"' s - =B . e B {]93 —032 %%E‘J%? ﬁﬁfzfﬂxlﬁ], HE:&H%
: = - == 074 —040 | TXAEPREARXFIE KA,
. 0031 u::rf, i ] T X AT A ARSI AN A R R
TR ERESETERA R, IR S VO
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U= RE H T A2 38 B Tk A A AL 11 1]

A,y SR TP T T A EL A £

) X3 = 0.74f - 0.405 R -

059 =03 =02 -=0.72

X3 = 093f - 0.326
_0.47 —~0.58 0.45 0.50

IR IHERY R SRS




CCA — Canonical Correlation Analysis

CCA seeks to identify and quantify the associations between two
sets of variables.
Given two random vectors X € R" and Y € R®* (r =s orr # s),

consider linear dimension reduction of each of two random vectors,

f&,_:gfnglxl‘F'“‘l'ngr-
w=hY=mY{+---+ hYs.

CCA finds the random variables (£, w) or the projection vectors
(g, h) that give maximal correlation between £ and w,




o CCA formulation

u’ X'Yv
argmax S— S—
u€RP . vERY vV (T XTXu)(vIYTYvV)

X is n by p: n samples in p-dimensional space

> Y is n by gq: n samples in g-dimensional space
- The n samples are paired in X and Y

* How to solve! Generalized eigenproblems !
X'Y(Y'Y) 'Y Xu = \X'Xu
Y X(X'X)"' X' Yv = \Y'Yv




Motivation - Cocktail Party Problem
* Simple scenario:

— Two people speaking simultaneously in a room.

— Speeches are recorded by two microphones in separate locations.

IR s
w1




Let s(t), s,(t) be the speech signals emutted by the

two speakers.

Recorded tume signals, by the two mucrophones, are

denoted by x,(t), x,(t).

The recorded tume signals can be expressed as a

linear eqlmtion:

X (t) = ays(t) + apps 3(ft:)

X,o(t) = ay;5(t) + ays,(t)

of the mucrophones to the speaker, along with

where parameters m matux A depend on distances I

other microphoue properties

Assume s and s,(t) ave statistically independent.




u,(t) : recovered estimate
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> ZIEEI0E ... Euclidean §BES, PCA (as a transformer)

> REHIRERRT - HLRIEERER

v KNN (K Nearest Neighbor), MDS (Multi-Dimensional Scaling), IsoMap, LE, LLE, ...
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Regression

[0 Regression Curve — curve
with best possible fit for
data; describes how y
changes with x

M Single variable regression

» Describes relationship
between x and estimated
means of y

B0 8z

height

7B

76

I I I L) L) I
18 20 22 24 26 28

Y=ot fix+e
® Multivariable regression

Y=o+ BiXy + P, X+ + BoXy + &




L Here,y = S,+ B, X
my : predicted value of y A /
m S, : slope [#=] of regression line « I ’

B S, intercept [#A]

y, predicted
y;, observed
residual

M Residual error (€): Difference between obtained and
predicted values of y (i.e. y- y).

»&~N(0,6?)




Table 1 Average Income

& Consumption it yuan

0 How to compute those two

parameters — ﬂ 0> ﬂ 1 Year ?Xce:(:?ﬁ: conAsVUGrilagt?on
® \We have many pairs — (X;, Y;) 1001 R 249
® That means we have many 1982 | 419.14 267
equations 1983 | 460.86 289
[ y.= B+ Bxy 1984 | 544.11 329
P 1985 | 668.29 406
Yo~ ,fo+ 'flxz 1986 | 737.73 451
{ Ys= Byt Bixs 1987 | 859.97 513
.. 1988 | 1068.8 643
V.= Bt BiX, 1989 | 1169.2 690
®'How to compute 3, B,with so many | 1220 | 1291 3
equations? 1991 | 1429.5 803
1992 | 1725.9 947
1993 | 2099.5 1148




Could you recognize this is

an OP with unconstrained?

O LSM (Least Square
that

B argmin(Bo, B1 ) = X1 (7 9)?

0 We have:

B We are trying to minimize the squared distance (hence the
“least squares”) between the observations themselves and

the predicted values, or (also called the “residuals”, or left-over
unexplained variability)

d n

- ﬁ i=1 (yi — (Bo + lel-))z =0
> 2(2?=1(3’i — Bo — ,élxi)(—xi)) =0




[:]‘VA/EB EBt ( n n n
) HZ XiYi _[Z Xi](z YI]
B] _ 1=1 i=1 i=1
| i3 - (2x)
1=1 i=1
kBO =y - ﬁli

f = 13x9156173.99712827.5x 7457
" 13x16073323.77 - (12827.5)

1
B, =573.61538-0.52638x986.73077

N

B =0.526378

N

B, =54.2229

The regression line for “Table 17 is
y = 54.22286+0.52638x

400
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800 09/

600

400 M

200

0

0 200 1000 1500 2000
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Modeling is art
0 We have the following intuiti

[

é&%ﬁzﬁiﬁn IEIUaiFﬁifn S22 J7 Al
(SST) (SSR) (SSE)




0 We have

W SST (Sum of Squared Total) ¥, (y; — ¥)?
® SSR (Regression) X1, (§; — 7)?

® SSE (Error) %, (y; — 9)?

0 And they have following relationship

B SST =SSR + SSE

[0 The significance evaluation problem becomes to check
If SST and SSR are correlated or not

n n

s 26 S0y

— =l —1— 1
n

ST S yyf N -y)

i=1 i=1
M If correlated (r? = 1), this means the regression equation
could cover most given data records




[0We have the following ration to evaluate the intimacy of the
regression function

0 Back to “Table 3”

946507.2207 _ 31999725696
946766.9231

=> r =v0.999725696 = 0.999862838

.7‘2=




Significance of the independen For single variable

A~ ” | f regression, this is same as
e can use the value of co to evaluate the correlation

to evaluate the significance between x and y
can help us to select the sign

[l It’s based on the distribution c‘! and we necd

m |t |>t n» Reject Hy; |t|<t ns Accept H,
B H, pB,=0 (xis not significant with y)
B H;: B#0 (xIs significant with y)




http://www.real-statistics.com/multiple-
regression/testing-significance-extra-
variables-regression-model/

0 Do you feel familiar with the Group Testing based on F-
distribution?
IiESE-—EEE]fm
MSE

F =

~ F(m,dfg)

M E.g. suppose we consider the multiple regression model
Y = bu. + bj_:fj_ + b:I: + bHIH + bq_:f.g_ + bEIE

»want to determine whether b;, b, and b add significant benefit to the model
(i.e. whether the reduced model y = b, + b;X; + b,X, is significantly no
worse than the complete model).

v The null hypothesis H,: b;=b, = b, = 0 is tested using the statistic Fas

described in Property 1 where m = 3 and SS’: references the reduced model,
while SS;, MS¢ and dfg refer to the complete model.



http://www.real-statistics.com/multiple-regression/testing-significance-extra-variables-regression-model/
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What Is Sparsity?

- —

|1l Xy | min(Ax—b)2:0

~/ J
N 1

Choose the x with the : )
least nonzero component ¢——= Which do you want?

argmin ||x||O ,s.t. (AX— b)2 =0

X

|

a a, ... a, || ¢ |=|b|eR" Many x can achieve
|




ZRE AR % (Nuclear Magnetic Resonance Imaging,
: BIFENMRD , X EERAE (spin imaging) , WFRREIL
Why SparSIty? % (Magnetic Resonance Imaging, fFEMRI)

L1 The more concise, the more better
C1In some domain, there naturally exists a sparse latent vector that
controls the data we saw. (ex. MRI, music)

N % | A k-sparse domain means that each b can
bl=la, a, ... 8, || - |+(noise) be constructed by a x vector with at most
| | | 1] X k nonzero element

C1In some domain, samples from the same class have the sparse

property.
1 The domain can be learned.
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fRobust Uncertainty Principles: Exact Signul Reconstruction From Highly Incomplete Frequency Information #

IEEE Transactions on Information Theory, Feb. 2006

{ Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions? Foundations of Computational
Mathematics, Apr. 2006

{ Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?? 1EEE Transactions on
Information Theory, Dec. 2006
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http://slidesplayer.com/slide/11232492/

How to Get The Sparse Solution?

L1 There 1s no algorithm other than exhaustively searching to
solve:

X  =argmin||x]|,, s.t. (Ax—b)2 =0

L1 While in some situations (ex. special form of A), the solution
of I. minimization approaches the one of lo minimization

N
< =argmin|x, =Y.

n=1

x| s.t. (Ax—b)2 =0




¥ Have to use L, to approximate

a; = arg main{@ s.t.y =dWaj}

Sum of absolute values

® Convexity: tractable problem

»Solvable by Linear (LP) or Second-order programming (SOP)
»ForC>0,a,=alf

M>C-pu*(®,¥)- K -logN




¥ Noisy data: Solve the LASSO problem

ai(e) = argmin{|jalj; s.t. [[y—®PWal, < €}

® Convex problem solvable via 2" order cone programming (SOCP)
#1f 8, < N2 =1, then:

o < C

a—ag|/VE + Cle

51(6) —a




Dictionary generation

11n preceding sections, we generally assume that the (over-complete)
bases A Is existed and known

1However In practice, we usually need to build it:
» Wavelet + Fourier + Haar + ......
» Learning based on data

_IHow to learn?

Given a training set {b(‘) e R° }N , form B as B = [b‘l) b ... b(N)]

i=1

(A", X")=argmin|[B~ AX|[. + 2| X[, where X [ x x? ... x|

1 May result in over-fitting




An Important issue

L1When using sparse representation as a way of feature extraction,
you may wonder, even If there exists the sparsity property in the
data, does sparse feature really come up with better results? Does
It contain any semantic meaning?

_ISuccessful areas:

» Face recognition

» Digit recognition

» Object recognition (with carful design):
Ex. K-means => Sparse representation




De-noising

Learn a patch dictionary.
For each patch, compute
the sparse representation
then use it to reconstruct
the patch.

X =arg mXin||x||1 +/1HAx—b

1

b=AX
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ke sE SRS - EoliEETee

OFERiR = SFZINEFEEEHEE

o iBE(Distance) - ZiTEHE N ERYIES
> ZIEEI0E ... Euclidean §BES, PCA (as a transformer)
> REZEEE R - H ERIEEREH

v KNN (K Nearest Neighbor), MDS (Multi-Dimensional Scaling), IsoMap, LE, LLE, ...

» BT R AR I =B PEURAVEERS — Kernel AU

o JYEFE>rF — ik (Principal Components)
» PCA, FA (Factor Analysis), CCA, ICA, ...
» Regression-based Significance analysis
» Sparse Coding — Compressed/Compressing Sensing

e S /EHYEZNEZR — EM (Expectation Maximization)

» K-means, LDA, GMM, HMM, Peacock &

© BiERYFES




EM

1977 # & Dempster 4§ AL % 4 4% & A,
HArthur P. Dempster, Nan Lairdf[]Donald Rubin 1977FI1ET({EH
— MK E ktER, AFSA 2% E (hidden variable) 485 42 &1 A %
¢ 48 .k 42 % 46 ++ (Maximum Likelihood Estimation, MLE) , 3 & X /5 3%
# 41+ (Maximum A Posterior estimation, MAP)

F ik ot 32 & H o) B 38 # A Fp
% HF T (X) N k-Means, HMM, GMM, pLSA, LDA...
T (X, y) Naive Bayes, NN, LR, ME, SVM, GBDT...
* R A% X) + (X,y) self-training, co-training, S3VM...

7% ALF 7 (action, state, award) Markov Decision Process (MDP)




# A

k-Means
HMM

GMM

topic model
(E.g. pLSA, LDA)

IBM Model for
Word Alignment

HEGR TR 2
ARG OR £ T ot

BA5KE
(E.g. 44 14 for i H 4% i2; K& for 44 747 (2 A)

H# AP B ¢ 5 27 (Gaussian @istribution)

topic

9] 1% 2t 7
Eg (1t b £ 547 T AK)
(Bush held a meeting with Sharon)




By EM (Expectation-Maximization)

O With the given data (pronunciation sound [HMM], documents [LDA —
topic], etc.), it’s generated by some hidden logics

OBSERVABLE

STATES EM is the method to learn
' ' | the best mapping of the
« o ew - hidden logics to generate

the collected data

HIDDEN .
STATES




Many algorithms are using EM

0 K-means
0 GMM
B Gaussian Mixed Model
O HMM
B Hidden Markov Model
OO pLSA/pLSI
¥ Probabilistic Latent Semantic Analysis(Index)
0 LDA
B Latent Dirichlet Allocation

[l Peacock
® DA for Big Data




[|]ma¢ j+k34-d:(lCDM2006) (ﬁsu |

[2] ma# 1 +x3¢ Vz(lcomzooe) (?x@;]q.\)

Top 10 Algorlthms.

COMPUTER

Summary

= #1: C4.5 (61 votes), presented by Hiroshi Motoda

= #2: K-Means (60 votes), presented by Joydeep Ghosh

= #3: SVM (58 votes), presented by Qiang Yang

= #4: Apriori (52 votes), presented by Christos Faloutsos

= #5: EM (48 votes), presented by Joydeep Ghosh
Bemi————r,

= #6: PageRank (46 votes), presented by Christos
Faloutsos

= #7: AdaBoost (45 votes), presented by Zhi-Hua Zhou
= #7: kNN (45 votes), presented by Vipin Kumar

= #7: Naive Bayes (45 votes), presented by Qiang Yang
= #10: CART (34 votes), presented by Dan Steinberg

ICDM 2006 Panel 12/2172006, Coordinators: Xindong Wu and Vipin Kumar




EM: the Iintuition
* Assume that we have two coins, C1 and C2

* Assume the bias of C1 1s 6,
(1.e., probability of getting heads with C1)

* Assume the bias of C2 1s 6,
(1.e., probability of getting heads with C2)

*We want to find 64, 8, by performing a number of trials

(1.e., coln tosses)




First experiment

* We choose 5 times one of the coins.

* We toss the chosen coin 10 times

HTTTHHTHTH

HHHHTHHHHH

Q HTHHHHHTHH

HTHTTTHHTT

THHHTHHHTH

_ number of heads using C1
~ total number of flips using C1

_ number of heads using C2
~ total number of flips using C2

5,51
OH, 1T
8H, 2T

4H,6T

I H, 3T
24H,6T 9H, 11T




Assume a more challenging problem

E-step
HTTTHHTHTH
HHHHTHHHHH (@HTTTHHTHTH 0,45,(0 0,55)(0 ~22H,22T ~28H,28T
HHHHTHHHHH
e HTHHHHHTHH O.80x° OQOXQ ~72H,08T ~1.8H,02T
HTHHHHHTHH ool 0.73 o 0.27 o 59H,15T 21H,05T
THHHTHHHTH i X t X = . AL =Z. ALY
N
HTHTTTHHTT O.35x° O.65xo ~1.4H,21T ~26H,39T
6=0.60 O.65x° 0.35x o ~45H,1.9T ~25H, 11T
THHHTHHHTH 6°=0.50 | ~213H,86T =~11.7H,84T
*We do not know the identities Y o, 21.3
. .- L. b'~z3:gg~071
of the coins used for each ~ b o s
O T wag "~ 058

set of tosses (we treat them as

hidden variables).




BRAIEREERINIRERE ) = 0.6,0)) = 0.5, EXHISH FHIE HER, RESESRIEEREINETH

E— P(H’T’|A) = 0.6° x 0.4°, P(H*T®|B) = 0.5" -

b b T P A AR B T 0 e e DR R SR E S, A A2 0.45 R 0.55, ik

2 FETRE R XN RYIGS ROENZSECE R, ER—RGREREMED B

P (0.5520.45). [FIFHEATDOHE H E A PAAe 45 ok B AR My e, SRR848

fEEEFER. «
7E CANE T A2 R, B IE O A &5 AR IR A R . AR HE AAA 4K E B.

A J S e oy Ll B 0 B i e FR (R AW 1. 4 B AR B, 2. 3. SRR

JEEm A .
BEARETRSEESHE, XOTMaILERR NG, BERMRIR A EHEREEm, he 6] = 08,60 =
0.45. FAEXESEHIVLE N OLAETEE E A BEhRE =,

EPANM AR T R RN SRS, EERFRERNENEM iz, mEmstntisER%, RENEMEEHASBE
fse ERSRER, MEFEHAMTEIRENEE, EfFEshIER TS

FRIENGIFR, ATE—CEEEDANTTERLR0.45, IiAED AMIEREHILEENEAHKE45%, ESRIERfERS, FFET
B ARREER 5=0.45=2.25 %, ERFTFEHBRME2.75:x, EEaILLATHBEME D AN BEERN&ES, SaftkfEpnit snEs
G EETTR,

AR BIEARICAPOIEE, AT S B IMIRR0ELt, 7E 50 iedber, B Al 721 SREMNS SR, H
emitEd| = 0.71; BHBEHT N IREGNS 4RRE, HedsitEiy = 0.58, fMKALMgmsERBs, RalitE
| HBERsHE.




Assume a more challenging problem

AN MZEZEE = (21, 22,...2,) . BKEDH p(x, 2;0) . F4EH% p(z|x,0) |

RAIEURE. HTTTHHTHTH
B E: HHHHTHHHHH

(1) BEHWIAEEI S HORTIE 0, . — °

L
HTHHHHHTHH

(2) j=1,2,...] FFHAEMEZEEN: HTHTTTHHTT

« B HEEBRGHAYFAHEEREAE:

Qi(zi) = p(zi|zi, 0;) <

. Zi,2i; 0
1(6,;) = ZZQi(zi)Eogp(Q_(z_) ) o

THHHTHHHTH

2
[ p(xi’|z:,0) = l_[ [ekxij(l - Bk)l_mj]zm ]
k=1

« Mz ikt 1(6,0;) 53 0j11 EM’s challenge is to

' I
0,01 — argmazl(6,0;) compose this part!

U0, BEKEN, NEEEE, BNKEHFESTIMSTHT

i W SRS,




Assume a more challenging problem

AN MZEZEE = (21, 22,...2,) . BKEDH p(x, 2;0) . F4EH% p(z|x,0) |

ERAIEMRE. HTTTHHTHTH
— ELCLCALLLLEE
(1) BEHATHA SIS HIORITIE 6, . HTHHHHUTHH

(2) j=1,2,...] FFHAEMEZEEN: HTHTTTHHTT

« B HEEBRGHAYFAHEEREAE:

THHHTHHHTH
Qi(zi) = p(zi|zi, 6;) ~22H,22T ~28H,28T
Ty ~i
1(6,6;) = ZZQi(%)EGQ < ~59H,15T ~21H,05T
p Qi(zi)
~1.4H,21T ~26H,39T
« M5 AL 1(6,60;) 455 041 ~45H,18T  =25H,11T
- o 21.3
21.3H,86T 11.7H,84T 0, ~m~071
011 = argmazl(0,0;) <
A T s
. 6,7~0.80 # LI EEs
+ NR O, BEKER, WEFEER, BNRESEHTESMMSETIER, —>_ 2 590 e
B ~V

I W EEEH0.




EM: the Maths (setting the joint)

P(XL-XZ:“':X5;Z1,zz:“';35|9) £ [Z;] < “[1} ’ [(1)”
= p({x, L, 1110}, -, {xst, -+, %5 10), 24 25, -, 251 6)

:Ip({xllr ‘”}xllﬂ}, Y {x51! Fx51n}|zl,22’ ”"25" g)p(zlazz’ '25)
5 5
- Hp({xilr",xim}m’ 2 l_[p(z’:)
i=1 i=1
2

p(z;) = ﬂn,ﬁik T, IS the probability of selecting coin k € {1,2}
k=1

10
P({Xil,'" ,x510}|3f, 0) = l_lp(xijlzi: 0)
j=1




x;/ =1 Ifj toss of i run is head
xi’ =0 if j toss of i run is tajl

i 2

p(x]z.0) = [ [0 (1 — 60|
\ 1

k= )

then




lnp(X:[,Xz, v, X5, 21 2o, :ZS|9)
5 10 2

1 1 1

5 2
- 2y In 6,77 (1 — g + Z Z Zik In 1,
. . 1=1 k=1

Taking the expectation of the above
Ep(Z|X) [ln p(XlJXZ: T XS! Z125, ", Zs |9)]

J L
Ep(zx)[Ziac]In 6™ (1 — )17

=1 5 2
¢ T z z Ep(z1x)|zik] In T,

i=1 k=1




p(ZIX: 9) — p(31,22: ot PZS|X11X2J' o :XS; 9)

Epzix|zik] = Z “'Zzik p(Z|X,0) = Zzikp(zd{xil- 0, %01
Zq Zg

Zj
I

p({x;', -, %'}z, 0)p(z))

V2 X'l,'“,x'lo —_
p(zilix, ) p({x;, -, x;19}|0)

o _E-k
10 172 xi/ 1—x ] 7
10 M |0 @ = 01| e

- j 1%k |
Lz, }21 l_[£=1 lgk;ﬁ (1 -0t ] Ty ik




] .y
122, T2, |6 (1 — )1
Epczixlzik] = Zzik — - =
7 2z llj=q k= [Hk "1 -0t ] 7, 2ik
j 1Zik
Ezi Zik H}S:{ Hff:l I:Qkx[j(]_ —_ Bk)l_xjj] chzik

J . j1%ik +
2z, }21 [Ti=1 [kal (1 =6 )% ] 1T, Zik

L

Zik 5.
] T[H.' ik

Ty H}21 kai} (1-— Qk)l_xfj

T n}gl 91Xij(1 - 91)1-xif + 7, H}E:L szij(l — Bz)l'xij




EM: Expectation and Maximization Steps
Expectation (E) Step (fix 6):

1 1
ﬂ-l —_ E sz —_ E
10 x-f 1—x-j
0 g% (1 —0,)1 ¥
1 Ok k
Epzixlzik] = .

.J ] J ]
[172,6," (1 —6.)* * [172, 6. (1—62)! xi!
Maximization Step (fix Ep(Z|X) [Zik] )

maxL(G)— Epczix|Inp(X1, Xa, -+, X5, 21 25, , 2516) |

J
- 7 7 7 Ep(z13[Zi]In O (1 — 0 )1 xa
1j=1k=1
i=1j= +Z Z Eyzix0|zik] Inmy

i=1 k=1

2
7 Epczixlzik] (' In6) + (1 — x;7 )In(1 — 6;)) + const




EM: Maximization Step

dL(0)
dQl Z Z Ep(Z|X}[Z£l (x£ (]_ —_ xlj)

i=1 j=1

5
> > Epalzal (6 (1= 6:) = (1-x7)6;) = 0
(=1 j

i—1

P12 21 Bz [zin 1%y  Xie1 2521 Epzin [2i2) %
Y7-1 10 Epzixy[2i2]

2[5=1 10 Eyz1x) 1Zi1]




ke sE SRS - EoliEETee

OFERH SN2 FINEFEESHIELE

o iBE(Distance) - ZiTEHE N ERYIES
> ZIEEI0E ... Euclidean §BES, PCA (as a transformer)
> REZEEE R - H ERIEEREH
v KNN (K Nearest Neighbor), MDS (Multi-Dimensional Scaling), IsoMap, LE, LLE, ...
» BT R AR I =B PEURAVEERS — Kernel AU
o JYEFE>rF — ik (Principal Components)
» PCA, FA (Factor Analysis), CCA, ICA, ...
» Regression-based Significance analysis
» Sparse Coding — Compressed/Compressing Sensing

o HHEEAISZIHEZS — EM (Expectation Maximization)

» K-means, LDA, GMM, HMM, Peacock &

o EEATAE




